Tetragonal
$14, c d$
$a=14.795$ (1) \AA
$c=16.634$ (2) \AA
$V=3641.2(6) \AA^{3}$
$Z=8$
$D_{\mathrm{i}}=1.542 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Rigaku AFC-5S diffractometer
ω scans
Absorption correction:
analytical (de Meulenaer
\& Tompa, 1965)
$T_{\text {min }}=0.318, T_{\text {max }}=0.634$
9986 measured reflections
1354 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w \cdot R\left(F^{2}\right)=0.063$
$S=0.923$
1354 reflections
122 parameters
H atoms constrained
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{(\prime \prime}^{2}\right)+(0.0432 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.010$
$\Delta \rho_{\text {maia }}=0.229 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.206 \mathrm{e}^{-3}$

Cell parameters from 25 reflections
$\theta=31.59-39.73^{\circ}$
$\mu=4.454 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.40 \times 0.16 \times 0.10 \mathrm{~mm}$
Brown-red

1099 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=60.07^{\circ}$
$h=-16 \rightarrow 16$
$k=-16 \rightarrow 16$
$l=-18 \rightarrow 18$
3 standard reflections every 150 reflections intensity decay: $<2 \%$

Extinction correction: SHELXL97
Extinction coefficient: 0.00015 (4)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=-0.01(2)$

Goslar, J., Szczaniecki. P. B., Strawiak. M. M. \& Mroziński, J. (1988). Transition Met. Chem. 13, 81-84.
Kostka, K. \& Strawiak, M. M. (1982). Pol. J. Chem. 56. 895-901.
McArdle, P. (1995). J. Appl. Cnst. 28, 65.
Meulenaer, J. de \& Tompa. H. (1965). Acta Cryst. 19. 1014-1018.
Molecular Structure Corporation (1989a). MSCIAFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands. TX 77381, USA.
Molecular Structure Corporation (1989b). TEXSAN. Single Cṛstal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nardelli, M. (1996). J. Appl. Crist. 29, 296-300.
Nasiadek, M. (1985). Diploma thesis, Institute of Chemistry, Faculty of Pharmacy, Medical University of Łódź. Poland.
Orpen, A. G., Brammer, L., Allen. F. H., Kennard. O., Watson, D. G. \& Taylor. R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.
Sheldrick, G. M. (1990). Acta Crnst. A46, 467-473.
Sheldrick. G. M. (1997). SHELXL97. Program for the Refinement of Crnstal Structures. University of Göttingen, Germany.

Acta Cryst. (1998). C54, 1773-1777

Bis(dimethylammonium) Pentachloroantimonate(III), on the Deformation of the Octahedral Coordination of $\mathbf{S b}^{\text {III }}$

Maciej Bujak and Jacek Zaleski
Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland. E-mail: zaleski@uni.opole.pl

(Received 13 March 1998; accepted 29 June 1998)

Abstract

The structure of the title compound, $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}-$ [SbCl_{5}], was determined at 295 and 85 K . It consists of polymeric $\left(\mathrm{SbCl}_{5}^{2-}\right)_{n}$ chains composed of deformed SbCl_{6}^{3-} octahedra connected by corners and dimethylammonium cations. The temperature dependence of the $\mathrm{Sb}-\mathrm{Cl}$ bond lengths is discussed. It is argued that the deformation of the octahedral coordination of the $\mathrm{Sb}^{\text {III }}$ atom is caused by electrostatic interaction/hydrogen bonds.

Comment

Alkylammonium chloroantimonates are obtained by mixing amine hydrochloride and antimony trichloride in an organic solvent or aqueous hydrochloric acid. Depending on the ratio of the reactants used, the type of cation, the solvent and the experimental conditions one or more products of different stoichiometries may be obtained. They are defined by the general formula $R_{d} \mathrm{Sb}_{b} \mathrm{Cl}_{c}$. $(R=$ alkylammonium cation, $c=3 b+a)$. These compounds are attracting growing attention since many salts of this group undergo numerous phase tran-
sitions, some of them to polar ferroelectric, ferrielectric or pyroelectric phases (Sobczyk et al., 1997, and references therein). They are ionic salts with anionic sublattices composed of deformed SbCl_{6}^{3-} octahedra, isolated or connected to each other by corners, edges or faces. Alkylammonium cations are located in the anionic cavities and are connected to the anions by hydrogen bonds.
Dimethylammonium chloroantimonates are reported to crystallize in three different stoichiometries: $\left[\mathrm{NH}_{2}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ (DMACA), $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{SbCl}_{5}$ and $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{4} \mathrm{SbCl}_{7}$ (Ensinger et al., 1982). The anionic sublattice of DMACA is composed of two-dimensional polyanionic ($\left.\mathrm{Sb}_{2} \mathrm{Cl}_{9}^{3-}\right)_{n}$ layers formed by SbCl_{6}^{3-} octahedra connected by corners. The octahedra are arranged in such a way that they form a deformed honeycomb structure. At room temperature, there are two crystallographically independent disordered cations, one located inside the polyanionic cavities, the other between the layers. One phase transition from the paraelectric $P 2_{1} / c$ phase to the ferroelectric $P c$ phase at 242 K has been reported. It was attributed to ordering of the dimethylammonium cation located inside the polyanionic cavities as the temperature was lowered. At the phase transition, the anionic sublatice is further deformed. This can be explained by the displacement of Cl atoms in the direction of the N atoms of the dimethylammonium cations (Zaleski \& Pietraszko, 1996).
The anionic sublattice of $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{4} \mathrm{SbCl}_{7}$ is composed of isolated SbCl_{6}^{3-} units with three independent dimethylammonium cations (Knödler et al., 1988). The crystal structure of $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{SbCl}_{5}$ has not been reported so far. The goal of the present study was to determine the crystal structure of $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{SbCl}_{5}$, (I), at 295 and 85 K , and study the temperature dependence of the $\mathrm{Sb}-\mathrm{Cl}$ bond lengths.

(I)

The anionic sublattice of $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{SbCl}_{5}$ is built of one-dimensional ($\left.\mathrm{SbCl}_{5}^{2-}\right)_{n}$ chains composed of deformed SbCl_{6}^{3-} octahedra connected by corners. Two Cl atoms of the coordination sphere of each Sb atom are bridging and four are terminal. The Sb atoms are linked by the bridging Cl atoms, forming characteristic zigzag chains. Dimethylammonium cations are located in the cavities formed by the polyanionic lattice. They are connected to Cl atoms by hydrogen bonds. The crystal packing of $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{SbCl}_{5}$ is shown in Fig. 1.

At 295 K , the lengths of the $\mathrm{Sb}-\mathrm{Cl}$ bonds vary between 2.404 (1) and 3.257 (1) A. The longest $\mathrm{Sb}-\mathrm{Cl}$

Fig. 1. Packing diagram of $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{SbCl}_{5}$ at 295 K . Displacement ellipsoids are at 50% probability.
bonds are characteristic of bridging Cl atoms $[2.873$ (1) and 3.257 (1) $\AA]$, while the shortest bonds are those to the terminal atoms opposite the bridging ones [2.475 (1) and 2.404 (1) \AA]. Two other terminal bonds have intermediate lengths [2.616(1) \AA] (Table 2). It should be noted that the sum of the bond lengths between the Sb atom and the two opposite terminal Cl atoms is significantly lower ($5.232 \AA$) than in the case of two other pairs comprising bridging/terminal atoms (5.348 and $5.661 \AA$). The $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ angles (for Cl atoms cis to one another in the octahedra) vary between 82.37 (4) and $97.38(4)^{\circ}$.

At 85 K , the lengths of the $\mathrm{Sb}-\mathrm{Cl}$ bonds to terminal chlorines ($\mathrm{Cl} 1, \mathrm{Cl} 2$ and Cl 3) remain the same within one standard deviation, while bond lengths to bridging chlorine Cl 4 ($\mathrm{Cl} 44^{\mathrm{ii}}$) significantly increase;by 0.027 (2) (Sbl - Cl 4) and by 0.049 (2) $\AA\left(\mathrm{Sb}\right.$ - $\mathrm{Cl} 4^{\text {ii }}$) (Table 5). The $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ bond angles to Cl 1 and Cl 2 do not change, while the largest changes are observed for $\mathrm{Cl} 4^{\circ 1}$ [up to $2.62(8)^{\circ}$ in $\mathrm{Cl} 44^{\mathrm{ii}}-\mathrm{Sbl}-\mathrm{Cl} 2$].
The shortest $\mathrm{N} \cdots \mathrm{Cl}$ contacts fall in the range 3.266 (4)-3.353 (4) \AA at 295 K and 3.236 (3)-3.275 (3) \AA at 85 K (Tables 3 and 6), and correspond to hydrogen bonds of intermediate strength. A significant decrease of the distance between $\mathrm{Cl} 4^{\prime}$ and Nl at $85 \mathrm{~K}[0.078$ (4) \AA) should be noted.

The influence of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bonds on the octahedral coordination geometry of the Sb atom is shown in Fig. 2. As shown in the case of DMACA, when there are no hydrogen bonds to the bridging Cl atom this atom is located in the middle between Sb atoms with the $\mathrm{Sb}-\mathrm{Cl}-\mathrm{Sb}$ angle equal to 180° (Zaleski \& Pietraszko, 1996). In the case of $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{SbCl}_{5}$, the Sbl -
$\mathrm{Cl} 4-\mathrm{Sb} \mathrm{l}^{\text {iii }}$ angle is $168.44(4)^{\circ}$ corresponding to the displacement of Cl 4 by 0.30 (1) \AA from the line joining the Sb atoms. At 85 K , the $\mathrm{Sbl}-\mathrm{Cl} 4-\mathrm{Sbl}{ }^{\text {iii }}$ angle decreases to $166.46(4)^{\circ}$ with the displacement of Cl 4 increasing to 0.36 (1) A. As a result of the shifting of Cl 4 towards the $\mathrm{N} 1^{\text {iii }}$ atom, the $\mathrm{Cl} 2-\mathrm{Sbl}-\mathrm{Cl} 4$ angle decreases from 90 to $82.37(4)^{\circ}$, while Cl3-Sbl-Cl4 $4^{i i}$ increases to $97.38(4)^{\circ}$ at 295 K , and these deformations increase at 85 K to $81.52(4)$ and $99.56(4)^{\circ}$, respectively [symmetry code: (iii) $2-x, 2-y, 1-z$].

Fig. 2. Scheme of the hydrogen bonding involving the Cl 4 atom at $85 \mathrm{~K} . \mathrm{Cl} 4$ is displaced by 0.36 (1) \AA from the line joining the Sb atoms in the direction of the N atom. (Out of two symmetry-related cations forming hydrogen bonds to Cl 4 , only one is shown for clarity.) Displacement ellipsoids are at 50% probability. [Symmetry codes: (i) $x, \frac{3}{2}-y, z$; (ii) $x-\frac{1}{2}, y, \frac{3}{2}-z$; (iii) $2-x, 2-y, 1-z$.]

Antimony(III) possesses a lone electron pair (LEP), which occupies the spherical $5 s$ orbital. The LEP is responsible for the deformation of the octahedral coordination of $\mathrm{Sb}^{\text {III }}$ (Wang \& Liebau, 1996a,b; OlivierFourcade et al., 1990). The presence of the LEP makes the $\mathrm{Sb}^{\text {III }}-\mathrm{Cl}$ bonds significantly longer than the corresponding bonds of Sb^{\vee} compounds. Assuming ideal octahedral coordination, the typical length of the $\mathrm{Sb}^{\mathrm{III}}-\mathrm{Cl}$ bond is 2.65 (1) \AA, which is about 0.27 (2) \AA i longer than the corresponding $\mathrm{Sb}^{\vee}-\mathrm{Cl}$ bond [2.38 (1) \AA; Prassides et al., 1985]. The LEP has a screening effect on the atomic charge on antimony leading to the weakening and therefore elongation of the $\mathrm{Sb}-\mathrm{Cl}$ bonds. Electrostatic interactions together with hydrogen bonds easily deform the coordination of the Sb ${ }^{\text {III }}$ atoms. Only a very limited number of antimony(III) compounds possess almost ideal non-distorted octahedral coordination. All others are generally characterized by octahedral coordination deformed to various degrees. Generally, bridging chlorines form much longer (weaker) bonds in comparison with the terminal ones. They are generally quite easily displaced in the direction of a positive charge which in the case of alkylammonium compounds is located on the N atoms. In the case of terminal Cl atoms, these interactions lead to the deformation of $\mathrm{Cl}-\mathrm{Sb}-$ Cl angles from 90°.

Experimental

The title compound was obtained by mixing dimethylamine and antimony trichloride (molar ratio 7:1) in aqueous hydrochloric acid. Crystals of suitable dimensions for X-ray structure analysis were grown by slow evaporation at room temperature.

Compound (I) at 295 K

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{SbCl}_{5}\right]$
$M_{r}=391.19$
Orthorhombic
$P n m a$
$a=8.599(2) \AA$
$b=11.992(2) \AA$
$c=14.844(4) \AA$
$V=1530.7(5) \AA^{3}$
$Z=4$
$D_{x}=1.697 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.684 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 14 reflections
$\theta=7-11^{\circ}$
$\mu=2.641 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Needle
$0.35 \times 0.30 \times 0.25 \mathrm{~mm}$
Colourless

Data collection

Kuma KM-4 diffractometer
ω scans
Absorption correction:
empirical via ψ scans
(Sheldrick, 1990)
$T_{\text {min }}=0.438, T_{\text {max }}=0.517$
2918 measured reflections
1586 independent reflections
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=26.04^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 14$
$l=-18 \rightarrow 17$
2 standard reflections every 50 reflections intensity decay: 1.04%

1187 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.062$
$S=0.973$
1586 reflections
88 parameters
H -atom parameters
constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0336 P)^{2}\right.$
$+0.1980 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.006$
$\Delta \rho_{\text {max }}=0.328 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.415$ e \AA^{-3}
Extinction correction: SHELX97
Extinction coefficient: 0.0064 (4)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for (I) at 295 K

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	2	$U_{\text {eq }}$
Sbl	0.8066 (3)	3/4	0.6043 (2)	0.0440 (1)
Cll	0.8135 (1)	0.9679 (7)	0.5959 (6)	0.0663 (2)
Cl 2	1.0099 (1)	3/4	0.4932 (7)	0.0611 (3)
Cl 3	0.6096 (2)	3/4	(0.4828 (9)	0.0704 (3)
Cl 4	1.0661 (2)	3/4	0.7262 (7)	0.0641 (3)
N 1	().8020 (4)	1.0223 (4)	0.3805 (2)	$0.0800(1)$
Cl	0.8256 (7)	0.9292 (5)	0.3164 (3)	0.0916 (1)
C2	0.6444 (7)	1.0626 (6)	(0. 3880 (4)	0.111(2)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I) at $295 K$

Sbl-Cll	2.616 (1)	Sbl-Cl3	2.475 (1)
$\mathrm{Sbl}-\mathrm{Cl1}{ }^{\text {i }}$	2.616 (1)	Sbl-Cl4	2.873 (1)
Sbl-Cl2	2.404 (1)	Sbl-Cl4"	3.257 (1)
$\mathrm{Cll}{ }^{\mathbf{i}}-\mathrm{Sbl}-\mathrm{Cl} 1$	173.99 (4)	$\mathrm{Cl} 2-\mathrm{Sbl}-\mathrm{Cl} 4$	82.37 (4)
$\mathrm{Cl1}-\mathrm{Sbl}-\mathrm{Cl} 4$	90.71 (2)	$\mathrm{Cl2}-\mathrm{Sbl}-\mathrm{Cl}^{\text {" }}$	172.75 (4)
$\mathrm{Cl} 1-\mathrm{Sbl}-\mathrm{Cl}_{4}{ }^{\text {ii }}$	92.92 (2)	$\mathrm{Cl} 3-\mathrm{Sbl}-\mathrm{Cl} 1$	88.90 (2)
$\mathrm{Cll}^{1}-\mathrm{Sbl}-\mathrm{Cl} 4$	90.71 (2)	$\mathrm{Cl} 3-\mathrm{Sbl}-\mathrm{Cl} 1^{1}$	88.90 (2)
$\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Sbl}-\mathrm{Cl}^{\text {ii }}$	92.92 (2)	$\mathrm{Cl} 3-\mathrm{Sbl}-\mathrm{Cl} 4$	172.24 (4)
$\mathrm{Cl} 2-\mathrm{Sbl}-\mathrm{Cll}$	87.20 (2)	$\mathrm{Cl} 3-\mathrm{Sbl}-\mathrm{Cl}_{4}{ }^{\text {i }}$	97.38 (4)
$\mathrm{Cl} 2-\mathrm{Sbl}-\mathrm{Cll}^{1}$	87.20 (2)	$\mathrm{Cl} 4-\mathrm{Sb} 1-\mathrm{Cl}^{\prime \prime}$	90.38 (2)
$\mathrm{Cl} 2-\mathrm{Sb} 1-\mathrm{Cl} 3$	89.87 (5)	$\mathrm{Sbl}-\mathrm{Cl} 4-\mathrm{Sb}]^{\text {iii }}$	168.44 (4)

Symmetry codes: (i) $x, \frac{3}{2}-y, z$; (ii) $x-\frac{1}{2}, y, \frac{3}{2}-z$; (iii) $\frac{1}{2}+x, y, \frac{3}{2}-z$.

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I) at 295 K

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} I-\mathrm{HIE} \cdot \mathrm{Cl1}$	$0.88(5)$	$2.46(6)$	$3.266(4)$	$153(6)$
$\mathrm{N} 1-\mathrm{HID} \cdots \mathrm{Cl}^{1}$	$0.90(6)$	$2.63(6)$	$3.353(4)$	$138(6)$

Symmetry code: (i) $2-x, 2-y, 1-z$.

Compound (I) at 85 K

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{SbCl}_{5}\right]$
$M_{r}=391.19$
Orthorhombic
Pnma
$a=8.541$ (2) \AA
$b=11.873$ (2) \AA
$c=14.830$ (3) \AA
$V=1503.9(5) \AA^{3}$
$Z=4$
$D_{x}=1.728 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

DIP 2000 diffractometer
Oscillation method;
40 frames with 10°
oscillation and 1° overlap
Absorption correction: none
3140 measured reflections
1622 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from post refinement on all data
$\theta=3-26.5^{\circ}$
$\mu=2.688 \mathrm{~mm}^{-1}$
$T=85$ (2) K
Needle
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$
Colourless

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.055$
$S=1.069$
1622 reflections
88 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+3.8001 P\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=0.685 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.455 \mathrm{e}^{-3}$
Extinction correction: SHELX97
Extinction coefficient: 0.0033 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 4. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (I) at 85 K

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{1} \cdot \mathbf{a}_{j}$.				
	x	\underline{r}	こ	$U_{\text {eq }}$
Sbl	0.8016 (3)	3/4	0.6002 (2)	0.0210 (1)
Cl 1	0.8092 (1)	0.9699 (7)	0.5921 (5)	0.0308 (2)
Cl 3	0.6044 (1)	3/4	0.4780 (8)	0.0340 (3)
Cl 2	1.0089 (1)	3/4	0.4904 (7)	0.0297 (3)
Cl 4	1.0658 (1)	3/4	0.72303 (7)	0.0290 (3)
N1	0.8049 (4)	1.0231 (3)	0.3780 (2)	0.0352 (7)
Cl	0.8321 (5)	0.9296 (4)	0.3139 (3)	0.0410 (9)
C2	0.6395 (5)	1.0587 (4)	0.3848 (3)	0.0520 (1)

Table 5. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I) at 85 K

Sbl-Cll	2.615 (1)	$\mathrm{Sb} 1-\mathrm{Cl} 3$	2.474 (1)
Sbl-Cl1'	2.615 (1)	$\mathrm{Sb} 1-\mathrm{Cl} 4$	2.900 (1)
Sbl-Cl2	2.405 (1)	$\mathrm{Sb} 1-\mathrm{Cl} 4^{\text {" }}$	3.306 (1)
Cll ${ }^{\text {- }}$ - $\mathrm{Sbl}-\mathrm{Cla}$	174.01 (4)	$\mathrm{Cl} 2-\mathrm{Sbl}-\mathrm{Cl} 4$	81.52 (4)
$\mathrm{Cll}-\mathrm{Sbl}-\mathrm{Cl} 4$	90.56 (2)	$\mathrm{Cl2}-\mathrm{Sbl}-\mathrm{Cl}^{\text {i }}$	170.13 (4)
$\mathrm{Cll}-\mathrm{Sbl}-\mathrm{Cl}^{\text {i }}$	92.957 (2)	$\mathrm{Cl3-Sb1-Cl1}$	89.03 (2)
$\mathrm{Cll}{ }^{\text {i}}-\mathrm{Sbl}-\mathrm{Cl} 4$	90.56 (2)	$\mathrm{Cl} 3-\mathrm{Sbl}-\mathrm{Cll}^{1}$	89.03 (2)
$\mathrm{ClI}{ }^{\prime}-\mathrm{Sbl}-\mathrm{Cl}^{1{ }^{11}}$	92.96 (2)	$\mathrm{Cl} 3-\mathrm{Sb} 1-\mathrm{Cl} 4$	171.83 (4)
$\mathrm{Cl} 2-\mathrm{Sbl}-\mathrm{Cll}$	87.17 (2)	$\mathrm{Cl} 3-\mathrm{Sbl}-\mathrm{Cl} 4^{\prime \prime}$	99.56 (4)
$\mathrm{Cl2}-\mathrm{Sbl}-\mathrm{Cl1}{ }^{1}$	87.17 (2)	$\mathrm{Cl} 4-\mathrm{Sbl}-\mathrm{Cl}^{\prime \prime}$	88.61 (2)
$\mathrm{Cl2}-\mathrm{Sbl}-\mathrm{Cl} 3$	90.30 (4)	Sbl-Cl4-Sbl'"	166.46 (4)

Symmetry codes: (i) $x, \frac{3}{2}-y, z$; (ii) $x-\frac{1}{2}, y, \frac{3}{2}-z$; (iii) $\frac{1}{2}+x, y, \frac{3}{2}-z$.
Table 6. Hydrogen-bonding geometry $\left(\AA \AA^{\circ}\right)$ for (I) at $85 K$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 E \cdots \mathrm{Cl} 1$	$0.83(3)$	$2.45(4)$	$3.236(3)$	$159(4)$
$\mathrm{NI}-\mathrm{H} 1 D \cdots \mathrm{Cl} 4^{\mathrm{i}}$	$0.85(3)$	$2.48(4)$	$3.275(3)$	$157(4)$

Symmetry code: (i) $2-x, 2-y, 1-z$.
Data collection: Kuma Diffraction Software (Kuma, 1997) for (I) at 295 K ; DENZO (Otwinowski \& Minor, 1997) for (I) at 85 K . Cell refinement: Kuma Diffraction Software for (I) at $295 \mathrm{~K} ; D E N Z O$ for (I) at 85 K . Data reduction: Kuma Diffraction Software for (I) at 295 K; DENZO for (I) at 85 K . For both compounds, program(s) used to solve structures: SHELX97 (Sheldrick, 1997); program(s) used to refine structures: SHELX97; molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELX97

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1283). Services for accessing these data are described at the back of the journal.

References

Ensinger, U., Schwarz, W. \& Schmidt. A. (1982). Z. Naturforsch. Teil B, 37, 1584-1589.
Knödler, F., Ensinger, U., Schwarz, W. \& Schmidt, A. (1988). Z. Anorg. Allg. Chem. 557, 208-218.
Kuma (1997). Kuma Diffraction Software. Version KM4B8. Kuma Diffraction, Wroctaw, Poland.
Olivier-Fourcade, J., Ibanez, A., Jumas, J. C., Maurin, M., Lefebvre, I., Lippens, P., Lannoo, M. \& Allan, G. (1990). J. Solid State Chem. 87, 366-377.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzrmology, Vol. 276, Macromolecular Crystallography. Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. London: Academic Press.
Prassides, K., Day, P. \& Cheetham. A. K. (1985). Inorg. Chem. 24. 545-552.

Sheldrick, G. M. (1990). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELX97. Programs for the Solution and the Refinement of Crystal Structures. University of Göttingen, Germany.
Sobczyk, L., Jakubas, R. \& Zaleski, J. (1997). Pol. J. Chem. 71, 265-300.
Wang, X. \& Liebau, F. (1996a). Acta Cryst. B52, 7-15.
Wang, X. \& Liebau, F. (1996b). Z. Kristallogr. 211, 437-439.
Zaleski, J. \& Pietraszko, A. (1996). Acta Cryst. B52, 287-295.

Acta Cryst. (1998). C54, 1777-1779

(1,1'-Dimethyl-2,2'-biimidazole- $N^{3}, N^{3^{\prime}}$)diiodoplatinum(II)

Jose S. Casas, alfonso Castiñeiras, Yolanda Parajó, José Sordo and José M. Varela

Universidad de Santiago de Compostela, Departamento de Química Inorgánica, Facultad de Farmacia, Campus Universitario Sur, E-15706 Santiago de Compostela, Spain. E-mail: qiac01@usc.es

(Received 27 March 1998; accepted 24 July 1998)

Abstract

The title compound, $\left[\mathrm{PtI}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right]$, exhibits squareplanar cis coordination of the Pt atom to the two I atoms [mean Pt -I distance $=2.587(6) \AA$] and the two unmethylated imidazole N atoms [mean $\mathrm{Pt}-\mathrm{N}$ distance $=2.020$ (6) A \AA]. Successively antiparallel nearplanar $\left[\mathrm{PtI}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right]$ units form zigzag chains along the b axis, with $\mathrm{Pt} \cdots \mathrm{Pt}$ distances longer than the interplanar spacing.

Comment

In recent years, we have investigated the coordination chemistry of $2,2^{\prime}$-biimidazole derivatives, focusing on the structures and biological activities of their organotin compounds (Álvarez Boo et al., 1997, and references therein). Prompted by reports (Karentzopoulos et al., 1997, and references therein) that small differences between biimidazoles can be associated with significant differences in the cytotoxicity of their platinum complexes, a finding that heightens the interest of structural studies of these compounds, we have now synthesized and determined the crystal structure of ($1,1^{\prime}$-dimethyl-2, 2^{\prime}-biimidazole)diiodoplatinum(II), $\left[\mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{bim}\right) \mathrm{I}_{2}\right]$, (1).

(1)

The molecular structure and atomic numbering scheme of (1) are shown in Fig. 1. The Pt atom is coordinated to the two unmethylated N atoms of the biimidazole ligand and to two I atoms in a squareplanar $\mathrm{PtN}_{2} \mathrm{I}_{2}$ arrangement in which the Pt atom lies $0.0138 \AA$ from the least-squares plane through four atoms $\left(\mathrm{N}_{2} \mathrm{I}_{2}\right)$. The $\mathrm{Pt}-\mathrm{I}$ and $\mathrm{Pt}-\mathrm{N}$ bond distances (Table 1) are similar to those found in [$\mathrm{Pt}($ bipy $) \mathrm{I}_{2}$] (bipy is bipyridyl) [Pt-I 2.589 (2) and $\mathrm{Pt}-\mathrm{N} 2.029$ (7) A ; Connick \& Gray, 1994]. The N-PP-N angle is just slightly narrower than in $\left[\mathrm{Pt}(\right.$ bipy $\left.) \mathrm{I}_{2}\right][79.3$ (3) \AA A $]$, but the $\mathrm{I}-\mathrm{Pl}-\mathrm{I}$ angle is wider than in the latter compound ($87.7 \AA$), and is close to those found in complexes with monodentate N -donor ligands (Oksanen et al., 1989; Raudaschl-Sieber et al., 1986). The parameters of the $\mathrm{PtN}_{2} \mathrm{C}_{2}$ ring are very similar to those found in $\left[\mathrm{Pt}(\mathrm{mimim}) \mathrm{Cl}_{2}\right] . \mathrm{Et}_{4} \mathrm{NCl}$ (mimim is N-methyl-2,2' ${ }^{\prime}$ biimidazole) (Karentzopoulos et al., 1997); the $\mathrm{Pt}-\mathrm{N}$ distances, in particular, are practically identical. The biggest difference is that the C3-C4 bond length is shorter in $\left[\mathrm{Pt}\left(\mathrm{Me}_{2}\right.\right.$ bim $\left.) \mathrm{I}_{2}\right]$, which leads to the $\mathrm{N}-\mathrm{Pt}$ N angle being slightly narrower.

Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Ellipsoids are shown at the 50% probability level.

In the Me_{2} bim ligand, rings A (containing N 1) and B (containing N3) are both planar and are almost coplanar, making angles of $2.6(3)$ and $3.5(3)^{\circ}$, respectively, with the $\mathrm{PtN}_{2} \mathrm{I}_{2}$ plane. This quasi-coplanarity of the two rings contrasts with the situation in [$\mathrm{SnMe}_{2} \mathrm{Br}_{2}$ ($\left.\mathrm{Me}_{2} \mathrm{bim}\right)$] (23.8 ${ }^{\circ}$; López et al., 1992).

As in [$\mathrm{Pt}($ bipy $\left.) \mathrm{I}_{2}\right]$, successively antiparallel monomer units form stacks, in this case along the b axis, with $\mathrm{Pt} \cdots \mathrm{Pt}$ distances $[4.7388$ (7) and 4.7731 (7) \AA] longer than the distance between the planes of successive monomers (Fig. 2 and Table 1). The relative displacement of adjacent members of the stack gives it a zigzag structure.

